Evolutive design of ARMA and ANN models for time series forecasting
Juan Flores,
Mario Graff and
Hector Rodriguez
Renewable Energy, 2012, vol. 44, issue C, 225-230
Abstract:
The evolutionary design of time series forecasters is a field that has been explored for several years now. In this paper, a complete design and training of ARMA (Auto-Regressive Moving Average) and ANN (Artificial Neural Networks) models through the use of Evolutionary Computation is presented. That is, given a time series, our proposal (EDFM – Evolutionary Design of Forecasting Models) qualitatively and quantitatively identifies a competitive model to perform the forecasting task. In the qualitative phase of the model identification, EDFM identifies the variables relevant to the process; i.e. the subset of variables, within a given window width, that provides the best forecasting, following the parsimony criterion. In the quantitative phase of the identification process, all free parameters are numerically instantiated; i.e. the coefficient of the ARMA models, or the ANN weights are determined. The results show that ANN yield better forecasts than ARMA models in all the cases presented in this paper.
Keywords: Time series forecasting; Artificial neural networks; Evolutionary algorithms; Feature selection (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014811200095X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:44:y:2012:i:c:p:225-230
DOI: 10.1016/j.renene.2012.01.084
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().