Computer-aided design of horizontal axis turbine blades
F. Pérez-Arribas and
I. Trejo-Vargas
Renewable Energy, 2012, vol. 44, issue C, 252-260
Abstract:
This paper presents a computer-based method for modelling the blades of horizontal axis turbines using B-spline surfaces. The method uses common design parameters for the geometry of this type of turbine and produces a final set of B-spline surfaces for the geometry of the blades that can be used for the visualisation, calculations and construction of the rotor surface. The method begins with the creation of a 3D set of offsets that constitute the rotor blades based on a 2D definition of the airfoils, which is normally used in the design of different stations along the rotor blade. It also uses geometrical parameters such as the skew and rake or coning distribution. The method stresses the fitting of the blade’s leading edge, which has a significant impact on the properties of the rotor and separately models the trailing edge of the blades. B-spline curves and surfaces are used in this method because they are widely used in CAD-CAM software products and can be easily exported to other programs.
Keywords: Rotor blades; B-splines; Parametric design (search for similar items in EconPapers)
Date: 2012
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148112001309
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:44:y:2012:i:c:p:252-260
DOI: 10.1016/j.renene.2012.01.100
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().