Study and optimization of a solar subcritical organic Rankine cycle
Michaël Marion,
Ionut Voicu and
Anne-Lise Tiffonnet
Renewable Energy, 2012, vol. 48, issue C, 100-109
Abstract:
The theoretical and experimental studies presented in this paper show the potential of producing mechanical power by a system combining a solar thermal collector with an organic Rankine cycle (ORC). A theoretical model based on heat transfer equations was developed and predicted the thermal equilibrium state of a small-scale single glazed flat plate collector. Experiments conducted with a commercial collector validated the modeling predictions. The thermal performances of the commercial collector and improved double-glazed flat plate collector were then simulated for different operational conditions. A subcritical Rankine cycle was simulated for organic fluids R134a, R227ea and R365mfc operating between the solar collector and a fixed temperature sink. In order to establish the optimum configuration, a set of parametric studies was carried out. Special attention is given to the optimum mass flow rate and to the impact made by improving the thermal performance of the solar collector.
Keywords: Solar energy; Organic Rankine cycle; Double-glazed solar collector; Exergy (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148112002881
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:48:y:2012:i:c:p:100-109
DOI: 10.1016/j.renene.2012.04.047
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().