EconPapers    
Economics at your fingertips  
 

Reliability analysis for hydrokinetic turbine blades

Zhen Hu and Xiaoping Du

Renewable Energy, 2012, vol. 48, issue C, 251-262

Abstract: Reliability is an important element in the performance of hydrokinetic turbines. It is also a driving factor of the system lifetime cost. In this paper, we perform time-dependent reliability analysis for the blades of a river-based horizontal-axis hydrokinetic turbine. Based on the stochastic representation of the monthly river velocity and material strength, a limit-state function is established with the classical blade element momentum method. In the limit-state function, a failure is defined as the event when the flapwise bending moment exceeds the allowable moment that corresponds to the ultimate strength of the material. The upcrossing rate method is employed to calculate the time-dependent reliability of the hydrokinetic turbine blade over its design life period. The results indicate that setting a proper cut-out river velocity is important for the reliability of the hydrokinetic turbine blade.

Keywords: Reliability; Hydrokinetic turbine; Time-dependent; Cut-out velocity (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148112003151
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:48:y:2012:i:c:p:251-262

DOI: 10.1016/j.renene.2012.05.002

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:48:y:2012:i:c:p:251-262