Multi-injection rate thermal response test with forced convection in a groundwater-filled borehole in hard rock
Heiko T. Liebel,
Saqib Javed and
Gunnar Vistnes
Renewable Energy, 2012, vol. 48, issue C, 263-268
Abstract:
Convection is shown in earlier studies to improve the thermal contact between heat exchanger and borehole wall in water-filled boreholes. This study investigates the effect of convection on the required borehole length for a ground-coupled heat pump installation. Artificial convection was induced by an ordinary groundwater pump during a multi-injection rate thermal response test (MIR-TRT). For comparison, a second MIR-TRT was performed without pumping of groundwater. The required borehole length was estimated for a ground-coupled heat pump installation supplying a Swedish single-family house. The estimates are based on the results from the MIR-TRTs for thermal conductivity and borehole resistance. The results show linear decrease in required borehole length with increasing heat input rate during the MIR-TRT without pumping of groundwater due to buoyancy-driven convection. An artificial convection stronger than buoyancy-driven convection during the MIR-TRT with pumping of groundwater reduced the required borehole length by 9 %–25 % depending on the heat input rate.
Keywords: Convection; Ground-coupled heat pump; Hard rock; Multi-injection rate thermal response test; Thermal borehole resistance; Thermal conductivity (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148112003187
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:48:y:2012:i:c:p:263-268
DOI: 10.1016/j.renene.2012.05.005
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().