EconPapers    
Economics at your fingertips  
 

Experimental and theoretical analysis of a dynamic test method for molten salt cavity receiver

Qiangqiang Zhang, Xin Li, Zhifeng Wang, Chun Chang and Hong Liu

Renewable Energy, 2013, vol. 50, issue C, 214-221

Abstract: Test methods for estimating the thermal performance of the molten salt receiver are a matter of ongoing concern. To date, test methods in the literature require receiver to be operated in steady state or quasi-steady state. However, the receiver is always operating in the unsteady state with ongoing changes in power absorption and flow rate. Therefore, research into dynamic test method for the molten salt cavity receiver is required. The Transfer Function Method (TFM) is a successful dynamic test method for solar collectors. In this paper, a theoretical analysis of the TFM was applied to the molten salt cavity receiver and then verified by indoor transient experiments. The TFM predicted outlet temperature of the receiver was compared with experimental data. The results showed that the TFM accurately predicted the outlet temperature trends despite some errors between predicted and measured outlet temperature. The errors may have originated from the changing flow rate. The TFM is a good candidate as a dynamic test method for the concentrated solar receiver.

Keywords: Molten salt cavity receiver; Transfer function method; Dynamic test method (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148112004053
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:50:y:2013:i:c:p:214-221

DOI: 10.1016/j.renene.2012.06.054

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:50:y:2013:i:c:p:214-221