EconPapers    
Economics at your fingertips  
 

Optimization of selected salts concentration for improved biohydrogen production from biodiesel-based glycerol using Enterobacter aerogenes

Rujira Jitrwung, Jonathan Verrett and Viviane Yargeau

Renewable Energy, 2013, vol. 50, issue C, 222-226

Abstract: Enterobacter aerogenes have a known ability to convert glycerol (GL) in a fermentative process to yield hydrogen and ethanol as the main by-products. The concentration of some media constituents was optimized to maximize biohydrogen yield and rate of production. E. aerogenes were cultured in aerobic conditions, and then transferred into anaerobic conditions before being cultured in a minimum mineral synthetic media (MMSM) containing 15 g/L GL. The concentration of selected salts were optimized in the following ranges: 0–300 mg/L MgSO4, 0–14 g/L Na2EDTA, 0–10 mg/L CaCL2, 0–10 g/L Na2HPO4, and 0–9.7 g/L KH2PO4. The results of the full factorial design indicated that the production of biohydrogen required a minimal concentration of 3.5 mg/L EDTA, 200 mg/L MgSO4.7H2O and no CaCl2.2H2O. A significant interaction between EDTA and MgSO4 was also observed. Results from the phosphate salts optimization showed that Na2HPO4 gave better results than KH2PO4. The optimal conditions determined using pure glycerol (commercial grade glycerol), were successfully applied to the fermentation of crude glycerol from biodiesel production. The results indicated promising yields of 0.79 and 0.84 mol/mol of glycerol for bioethanol and biohydrogen, respectively, and this at a faster rate than reported previously for E. aerogenes.

Keywords: Enterobacter aerogenes; Glycerol; Biohydrogen (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148112004004
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:50:y:2013:i:c:p:222-226

DOI: 10.1016/j.renene.2012.06.049

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:50:y:2013:i:c:p:222-226