Neural network approach to estimate 10-min solar global irradiation values on tilted planes
Gilles Notton,
Christophe Paoli,
Liliana Ivanova,
Siyana Vasileva and
Marie Laure Nivet
Renewable Energy, 2013, vol. 50, issue C, 576-584
Abstract:
Calculation of solar global irradiation on tilted planes from only horizontal global one is particularly difficult when the time step is small. We used an Artificial Neural Network (ANN) to realize this conversion at a 10-min time step. The ANN is developed and optimized using five years of solar data and the accuracy of the optimal configuration is around 9% for the RMSE and around 5.5% for the RMAE i.e. similar or slightly lower than the errors obtained with empirical correlations available in the literature and used for the estimation of hourly data.
Keywords: Solar irradiation; Artificial Neural Network; Estimation (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148112004697
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:50:y:2013:i:c:p:576-584
DOI: 10.1016/j.renene.2012.07.035
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().