Very short-term wind speed forecasting with Bayesian structural break model
Yu Jiang,
Zhe Song and
Andrew Kusiak
Renewable Energy, 2013, vol. 50, issue C, 637-647
Abstract:
This paper examines a new time series method for very short-term wind speed forecasting. The time series forecasting model is based on Bayesian theory and structural break modeling, which could incorporate domain knowledge about wind speed as a prior. Besides this Bayesian structural break model predicts wind speed as a set of possible values, which is different from classical time series model's single-value prediction This set of predicted values could be used for various applications, such as wind turbine predictive control, wind power scheduling. The proposed model is tested with actual wind speed data collected from utility-scale wind turbines.
Keywords: Time series; Forecasting; Wind power; Wind speed; Bayesian structural break model (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (33)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148112004764
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:50:y:2013:i:c:p:637-647
DOI: 10.1016/j.renene.2012.07.041
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().