EconPapers    
Economics at your fingertips  
 

High temperature calorimetry and use of magnesium chloride for thermal energy storage

Weihuan Zhao, Ying Zheng, Joseph C. Sabol, Kemal Tuzla, Sudhakar Neti, Alparslan Oztekin and John C. Chen

Renewable Energy, 2013, vol. 50, issue C, 988-993

Abstract: The primary objective of this study is to develop encapsulated phase change materials (EPCMs) capable of storing thermal energy at temperatures above 750 °C. EPCM with magnesium chloride as phase change material (PCM) are considered here for application in concentrated solar power (CSP) systems. MgCl2 is an effective storage medium because of its high melting temperature, 714 °C, and high latent heat of fusion, 454 kJ/kg. A specialized calorimeter with requisite size and high temperature capability is designed and built to prove the storage capability of MgCl2 EPCM. The calorimeter is also used to determine heat capacities for MgCl2 in both liquid and solid states as well as its latent heat of fusion. Calorimetric tests for the thermal storage capacities of three MgCl2 EPCM samples show excellent agreement with published data. Based on the measured properties, the latent heat of phase change can contribute about 84% of the storage capacity of MgCl2 PCM for a 100 °C temperature swing bracketing the salt's melting point. Repeated thermal-cycles show sustained performance of MgCl2 EPCM capsules with no discernible diminishment in storage capacity.

Keywords: Calorimeter; Encapsulated phase change material; Latent heat storage; Magnesium chloride (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014811200506X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:50:y:2013:i:c:p:988-993

DOI: 10.1016/j.renene.2012.08.036

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:50:y:2013:i:c:p:988-993