A mathematical model for determining the optimal reflector position of a double exposure flat-plate solar collector
N. Nikolić and
N. Lukić
Renewable Energy, 2013, vol. 51, issue C, 292-301
Abstract:
A double exposure, flat-plate solar collector (DEFPC) can absorb solar irradiation from both its upper and lower absorber surfaces (LAS). Absorption from the LAS is accomplished using a flat-plate reflector placed below and parallel to the collector. This paper presents a mathematical model for determining the optimum reflector position of the DEFPC in the condition where the LAS is fully irradiated. Compared to other models, this model enables the calculation of the instantaneously irradiated area of the LAS for arbitrary finite dimensions of the reflector and the collector, their arbitrary mutual positions and at any position of the sun in the sky. The optimum reflector positions were obtained by simulating the model in FORTRAN for the spring (autumn) equinox and the winter and summer solstices. The simulations were performed for the optimal yearly position of the collector at 44° N Latitude (Kragujevac, Serbia) and for equal dimensions of the collector and the reflector whose minimum dimensions allow the full irradiation of the LAS. The model was experimentally verified, and the range of the reflector movement during a single year, as well as the optimal reflector dimensions for minimum movement, was determined.
Keywords: Double exposure flat-plate solar collector; Mathematical model; Irradiated area; Flat-plate reflector (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148112006052
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:51:y:2013:i:c:p:292-301
DOI: 10.1016/j.renene.2012.09.034
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().