Life Cycle Assessment of experimental cubicles including PCM manufactured from natural resources (esters): A theoretical study
Karim Menoufi,
Albert Castell,
Mohammed M. Farid,
Dieter Boer and
Luisa F. Cabeza
Renewable Energy, 2013, vol. 51, issue C, 398-403
Abstract:
Among the research activities that aim at reducing energy consumption in buildings and their impact on the environment is an experimental set-up that has several house-shaped cubicles constructed in Puigverd de Lleida (Spain). Assessing the environmental impact through studying the manufacturing, operational and disposal phases of these cubicles have been done in previous research. The objective of this paper is to investigate the use of esters as PCM in order to estimate its environmental impact in building envelopes in comparison to the use of paraffin or salt hydrates through a theoretical study. The evaluation of the environmental impact of this type of PCM material is conducted using Life Cycle Assessment (LCA) based on the Eco-indicator 99 method. It is found that the impact of ester used as PCM presents slightly better results than the case of using salt hydrates during the manufacturing impact. On the other hand, the use of salt hydrates or ester as PCM in the cubicles results in an impact reduction of 9% and 10.5% respectively, compared to the case of using paraffin.
Keywords: LCA (Life Cycle Assessment); PCM (phase change material); Ester; Buildings; EI99 (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148112006477
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:51:y:2013:i:c:p:398-403
DOI: 10.1016/j.renene.2012.10.010
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().