EconPapers    
Economics at your fingertips  
 

Investigation of species transport in a gas diffusion layer of a polymer electrolyte membrane fuel cell through two-phase modelling

Mamdud Hossain, Sheikh Zahidul Islam and Patricia Pollard

Renewable Energy, 2013, vol. 51, issue C, 404-418

Abstract: A two-phase polymer electrolyte membrane fuel cell model has been developed to investigate transport of species in a gas diffusion layer taking into account effects of liquid water saturation. A set of governing equations for mass, momentum, species concentration involving oxygen, hydrogen, water vapour and liquid water together with electrochemical reaction equations have been solved under computational fluid dynamics technique. The effects of presence of liquid water on the effective diffusivity of species have been investigated. A thorough comparison study of liquid water saturation model using power law with various exponential factors and a percolation based model has been carried out. The simulation results show that the power law model with exponential factor of 2 provides a good representation of species diffusivity and produces much closer agreement with experimental cell voltage, while the percolation based model produces overprediction of cell voltage. The effects of isotropic and anisotropic permeability of gas diffusion layer have also been studied and the simulated results show that the high isotropic permeability or a combination of high in-plane and low through-plane permeability results in higher performance of a polymer electrolyte membrane fuel cell. The fuel cell performance significantly deteriorates with low in-plane and high through-plane permeability of gas diffusion layer.

Keywords: PEM fuel cell; Saturation; Diffusivity; Permeability; Anisotropy; Gas diffusion layer (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148112006453
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:51:y:2013:i:c:p:404-418

DOI: 10.1016/j.renene.2012.10.008

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:51:y:2013:i:c:p:404-418