Modeling of the flow in a Darrieus water turbine: Wall grid refinement analysis and comparison with experiments
T. Maître,
E. Amet and
C. Pellone
Renewable Energy, 2013, vol. 51, issue C, 497-512
Abstract:
This paper presents some aspects concerning the 2D RANS numerical modeling of a Darrieus cross flow marine turbine. Two main features of the modeling are studied. The first deals with the influence of the near wall grid density on the numerical results. Most of the available literature concerning the occurrence of stalling foils emphasizes the need for a fine grid mesh at wall fitting y+ around the unity or less at the first near wall cell center. Nevertheless, in the case of a Darrieus turbine, the influence of this parameter has not yet been studied precisely. In particular, the exact y+ specification is not known, and its influence either on the global turbine performance or on the local flow field, has not been outlined. The present work provides insight into the y+ influence in a 2D Darrieus turbine and deals with its maximum acceptable value. The second feature concerns the ability of a 2D modeling to represent, the actual 3D flow in the turbine. The power coefficients CP are compared to those obtained in the hydrodynamic LEGI tunnel on a small scale model. The experimental power coefficients are presented with their associated precision. The comparisons show a medium tip speed ratio range around the nominal point for which the instantaneous ratio of the experimental and numerical power coefficients is a constant significantly lower than 1 regardless of the azimuthal position of the blades. This constant ratio is thought to be representative of the tip and arm-blade junctions losses.
Keywords: Darrieus water turbine; Numerical modeling; Near wall grid; Experimental performances (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (36)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148112006015
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:51:y:2013:i:c:p:497-512
DOI: 10.1016/j.renene.2012.09.030
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().