EconPapers    
Economics at your fingertips  
 

Short-term solar power prediction using a support vector machine

Jianwu Zeng and Wei Qiao

Renewable Energy, 2013, vol. 52, issue C, 118-127

Abstract: This paper proposes a least-square (LS) support vector machine (SVM)-based model for short-term solar power prediction (SPP). The input of the model includes historical data of atmospheric transmissivity in a novel two-dimensional (2D) form and other meteorological variables, including sky cover, relative humidity, and wind speed. The output of the model is the predicted atmospheric transmissivity, which then is converted to solar power according to the latitude of the site and the time of the day. Computer simulations are carried out to validate the proposed model by using the data obtained from the National Solar Radiation Database (NSRDB). Results show that the proposed model not only significantly outperforms a reference autoregressive (AR) model but also achieves better results than a radial basis function neural network (RBFNN)-based model in terms of prediction accuracy. The superiority of using transmissivity over sigmoid functions for data normalization is testified. Simulation studies also show that the use of additional meteorological variables, especially sky cover, improves the accuracy of SPP.

Keywords: Autoregressive (AR) model; Radial basis function neural network (RBFNN); Short term; Solar power prediction (SPP); Support vector machine (SVM) (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (55)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148112006465
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:52:y:2013:i:c:p:118-127

DOI: 10.1016/j.renene.2012.10.009

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:52:y:2013:i:c:p:118-127