Optimization and oxidative stability of biodiesel production from rice bran oil
N. El Boulifi,
A. Bouaid,
M. Martinez and
J. Aracil
Renewable Energy, 2013, vol. 53, issue C, 141-147
Abstract:
Biorefinery approach is introduced for the biodiesel production by utilizing low cost raw material, such as rice bran oil (RBO). The valorization of RBO was carried out by homogeneous transesterification process using response surface methodology (RSM) based on a two-variable central composition design (CCD). The process variables, temperature and catalyst concentration were found to have significant influence on biodiesel yield. The optimum combination derived via RSM for high ester yield (99.4%) was found to be 0.75% wt catalyst concentration at a reaction temperature of 45 °C. As biodiesel chemically is a long-chain alkyl methyl esters, its long-term fuel properties have become of great concern to the fuel industry. In order to determine the effects of long storage on oxidation stability, RBO biodiesel sample was stored for 24 months and the different physical–chemical properties were checked with respect to time. The results show that the acid value (AV), peroxide value (PV), and viscosity (ν) increased while the iodine value (IV) decreased. Based on results, correlations were obtained in terms of AV, IV, PV and ν as a function of time. Those correlations can be used to predict how long time biodiesel can safely be stored. AV, IV and PV of the biodiesel sample which was stored were within the limits in European biodiesel specifications (EN 14214).
Keywords: Biodiesel; Rice bran oil; Response surface methodology (RSM); Oxidation stability (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148112006969
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:53:y:2013:i:c:p:141-147
DOI: 10.1016/j.renene.2012.11.005
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().