A novel radial self-rectifying air turbine for use in wave energy converters. Part 2. Results from model testing
A.F.O. Falcão,
L.M.C. Gato and
E.P.A.S. Nunes
Renewable Energy, 2013, vol. 53, issue C, 159-164
Abstract:
The paper presents results from model testing of a self-rectifying radial-flow air turbine, that is being developed as an alternative to the axial-flow self-rectifying turbines for applications in wave energy conversion. In the new machine, named biradial turbine, the flow into, and out of, the rotor is radial. The rotor is surrounded by a pair of radial-flow guide-vane rows. The downstream guide vanes are prevented from obstructing the flow coming out of the rotor by axially displacing the whole guide vane set. The turbine model, with a 0.488 m diameter rotor, was tested in unidirectional flow. Experimental results are shown, in dimensionless form, for efficiency, power and pressure head versus flow rate. They are compared with predictions from CFD computations. The results from model testing were used to estimate the time-averaged efficiency of the turbine subject to the irregular bidirectional air flow induced by random waves.
Keywords: Air turbine; Radial turbine; Wave energy; Oscillating water column; Model testing; Experimental results (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148112007355
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:53:y:2013:i:c:p:159-164
DOI: 10.1016/j.renene.2012.11.018
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().