Multi-site testing and evaluation of remote sensing instruments for wind energy applications
J. Sanz Rodrigo,
F. Borbón Guillén,
P. Gómez Arranz,
M.S. Courtney,
R. Wagner and
E. Dupont
Renewable Energy, 2013, vol. 53, issue C, 200-210
Abstract:
A procedure for testing and evaluation of remote sensing instruments that makes use of two test sites in flat and complex terrain is presented. To illustrate the method, a system intercomparison experiment is presented involving one sodar and two lidars (pulsed and continuous-wave). The wind profilers are benchmarked with respect to reference cup anemometer and other mast-based instrumentation. The evaluation procedure comprises three steps: single-point regression, ensemble-averaged profile analysis and performance matrix summary. Apart from the influence of the terrain complexity on the flow field, it is also investigated the influence of the background atmospheric stability by classifying the results with the Richardson number in flat terrain and the Froude number in complex terrain. The result is a thorough field calibration of the instruments for a wide range of terrain-flow conditions fit for the purpose of conducting wind resource assessment campaigns.
Keywords: Remote sensing; Lidar; Sodar; Calibration; Wind resource assessment (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148112007379
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:53:y:2013:i:c:p:200-210
DOI: 10.1016/j.renene.2012.11.020
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().