Effects of electron beam patterns on melting and refining of silicon for photovoltaic applications
Sun-Ho Choi,
Bo-Yun Jang,
Jin-Seok Lee,
Young-Soo Ahn,
Woo-Young Yoon and
Jung-Hoon Joo
Renewable Energy, 2013, vol. 54, issue C, 40-45
Abstract:
An electron beam melting (EBM) system was fabricated to investigate its effectiveness in the refining of metallurgical grade silicon. The metallurgical refining of silicon is a promising process for reducing the production cost of silicon feedstock for solar cells. Especially, EBM is an excellent technology for evaporating not only metal impurities such as Mg and Ca, but also non-metal impurities such as P, C and O. In this study, a Cu cold crucible was placed in a high vacuum chamber equipped with a 100-kW electron-beam (e-beam) gun. Silicon was charged without any pretreatment such as crushing or acid-leaching. Among the various process parameters, the e-beam pattern was a key to determine the purification efficiency. Two patterns of e-beam were applied, circular and spiral, and their effects on the microstructure and impurity removal were investigated. A different interface between the solid and liquid silicon phase was formed during the solidification depending on the e-beam patterns. Those results were identical to those of the numerical analysis. When a spiral pattern was applied, the horizontal interface was formed and grains grew vertically and uniaxially, which enhanced the impurity removal efficiency. The charged silicon purity of 99.806% was enhanced up to 99.996% after only 44 min of EBM and refining.
Keywords: Silicon; Metallurgical refining; Electron beam melting; Photovoltaic (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148112005654
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:54:y:2013:i:c:p:40-45
DOI: 10.1016/j.renene.2012.09.003
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().