Ultrasonic vibration-assisted pelleting for cellulosic biofuel manufacturing: Investigation on power consumption
Qi Zhang,
Pengfei Zhang,
Zhijian Pei and
Donghai Wang
Renewable Energy, 2013, vol. 55, issue C, 175-181
Abstract:
Cellulosic ethanol produced from cellulosic biomass is an alternative to petroleum-based transportation fuels. Raw cellulosic biomass has low density, causing high costs in their storage, transportation, and handling. Ultrasonic vibration-assisted (UV-A) pelleting can increase the density of cellulosic biomass. Effects of UV-A pelleting variables on pellet quality (density, durability, stability, and strength) and sugar yield have been reported. However, power consumption in UV-A pelleting has not been fully investigated. This paper presents an experimental investigation on power consumption in UV-A pelleting of wheat straw. Effects of input variables (biomass moisture content, biomass particle size, pelleting pressure, and ultrasonic power) on power consumption are investigated. Results show that power consumption in UV-A pelleting increases as moisture content and particle size decrease, and as pelleting pressure and ultrasonic power increase.
Keywords: Biofuel; Biomass; Pelleting; Power consumption; Ultrasonic (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148112007793
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:55:y:2013:i:c:p:175-181
DOI: 10.1016/j.renene.2012.12.015
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().