Mesophilic and thermophilic anaerobic co-digestion of waste activated sludge and source sorted biowaste in pilot- and full-scale reactors
Cristina Cavinato,
David Bolzonella,
Paolo Pavan,
Francesco Fatone and
Franco Cecchi
Renewable Energy, 2013, vol. 55, issue C, 260-265
Abstract:
The paper presents the results of a pilot- and full-scale experimental campaign on the anaerobic co-digestion of waste activated sludge and biowaste both in mesophilic and thermophilic conditions. The study demonstrated the possibility to increase the specific biogas production from 0.34 to 0.49 m3/kgTVS and the gas production rate from 0.53 to 0.78 m3per m3 of reactor per day changing the reactor temperature from the mesophilic (37 °C) to the thermophilic (55 °C) range. The experimental work was carried out at pilot-scale, and the results match the full-scale behaviour. Ammonia nitrogen recycled from the anaerobic digestion section to the wastewater treatment plant accounted for about 4% of the total nitrogen loading. Digestate characteristics in terms of biological stability and heavy metals content suggested the opportunity of a short time post-aerobic stabilisation, leading to a high quality compost product.
Keywords: Anaerobic co-digestion; Biowaste; Waste activated sludge; Mesophilic; Thermophilic (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (27)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148113000062
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:55:y:2013:i:c:p:260-265
DOI: 10.1016/j.renene.2012.12.044
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().