Performance analysis of a new kind of heat pump-driven outdoor air processor using solid desiccant
Rang Tu,
Xiao-Hua Liu and
Yi Jiang
Renewable Energy, 2013, vol. 57, issue C, 101-110
Abstract:
A new type of outdoor air dehumidification processor using solid desiccant is proposed, in which a heat pump and square desiccant plates are combined. Each desiccant plate consists of an air channel with a honeycomb structure that is coated with desiccant material. The square desiccant plates change positions between the processed air duct for dehumidification and the regenerated air duct for regeneration. The cooling capacity of the heat pump is utilized to cool the processed air, and the exhaust heat of the heat pump is used to provide regenerative heat to the desiccant. Several stages can be combined together to gain higher efficiency. The proposed desiccant dehumidifier can achieve a low humidity ratio of the supplied air and provides low-temperature regeneration. A mathematical model is established to predict the performance of this desiccant processor, and the model shows good agreement with the experimental results. The factors that influence the performance of the processor are then analyzed in order to maximize performance. The simulation results show that the proposed desiccant processor provides regeneration at a low temperature (40–50 °C), and the COP can surpass 4.0 at different processed air inlet states.
Keywords: Solid desiccant; Dehumidification; Heat pump; Multi-stage; Simulation (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148113000761
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:57:y:2013:i:c:p:101-110
DOI: 10.1016/j.renene.2013.01.038
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().