Wave energy resources: Wave climate and exploitation
Jesus Portilla,
Jeison Sosa and
Luigi Cavaleri
Renewable Energy, 2013, vol. 57, issue C, 594-605
Abstract:
In identifying the most convenient zones for harvesting wave energy, it is natural to be attracted by the areas where we find the highest mean energy values. The obvious examples are the storm belts. A more careful analysis reveals that for practical use other factors need to be taken into account. Some of the main ones are the energy spread in frequency and direction, and its seasonality, without discussing the cost of the structure basically related to the conditions to be withstood. This reveals that other areas, in particular the equatorial ones, can be conveniently used, and be possibly advantageous from various points of view. Based on the results of the ECMWF ERA-Interim reanalysis and of altimeter data, we have carried out a comparative analysis between two locations with opposite characteristics, in the North Atlantic and in the Equatorial Pacific respectively. The quantified results confirm that less energetic, but more regular and less extreme, areas have a potential comparable to that of the classically considered storm belts.
Keywords: Wave energy; Wave climate; Renewable energy; Spectral energy distribution; Power generation (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (28)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148113001419
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:57:y:2013:i:c:p:594-605
DOI: 10.1016/j.renene.2013.02.032
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().