EconPapers    
Economics at your fingertips  
 

Monte Carlo analysis of wind farm surge arresters risk of failure due to lightning surges

Petar Sarajcev, Josip Vasilj and Ranko Goic

Renewable Energy, 2013, vol. 57, issue C, 626-634

Abstract: This paper presents a Monte Carlo procedure intended for the assessment of the metal-oxide (MO) surge arresters risk of failure in onshore wind farms. It focuses on the energy withstand (absorption) capability of the MO surge arresters in relation to lightning surges and in terms of their risk of failure assessment. Presented methodology accounts for the fact that the lightning itself is stochastic in nature and that the MO surge arrester energy capability is a statistical quantity. The well-known backsurge phenomenon is employed as a means for studying the MO surge arresters energy stresses due to lightning surge transients (in onshore wind farms), where the associated transient (i.e. high-frequency) models of particular wind farm components feature prominently. Necessary numerical simulations are carried-out with the well-known EMTP-ATP software package. This procedure could be seen as beneficial in selection of the optimal MO surge arrester energy withstand capability for wind farm projects situated in areas marked with high keraunic levels and/or having high soil resistivity.

Keywords: Wind turbine; Surge arrester; Risk assessment; Failure probability; Weibull distribution; Lightning surges (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148113001602
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:57:y:2013:i:c:p:626-634

DOI: 10.1016/j.renene.2013.03.004

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:57:y:2013:i:c:p:626-634