Optimal coordination of wind-hydro-thermal based on water complementing wind
K.Y. Wang,
X.J. Luo,
Libo Wu () and
X.C. Liu
Renewable Energy, 2013, vol. 60, issue C, 169-178
Abstract:
The increasing integration of wind power into the existing power system demands for effective strategies to deal with wind intermittency and uncertainty. Relying solely on thermal power to cover wind uncertainty will sacrifice the operating efficiency and economy of thermal generators. In view of this, the adjustable hydropower is preferred for complementing wind fluctuation and uncertainty and the coordinated dispatch problem of wind-hydro-thermal power is established. Based on a newly designed water supplementing wind strategy, the original complex problem is decomposed into wind-hydro subproblem and thermal subproblem. A novel stochastic constraint related to wind power uncertainty is proposed and handled according to stochastic programming theory. By introducing the concept of expected breed rate and elitist preservation strategy, the particle swarm optimization (PSO) algorithm is improved and combined with the exterior penalty function method for solving the complete optimization problem. Optimal generation scheduling schemes that can make full use of wind energy and ensure efficient and economic operating of thermal generators are obtained by the proposed approach. Meanwhile the coordinating operation of wind, hydro and thermal power under different water resources and wind penetrations respectively are revealed and discussed.
Keywords: Wind energy; Hydropower; Thermal power; Short term scheduling; Stochastic constraint; Particle swarm algorithm (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148113002310
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:60:y:2013:i:c:p:169-178
DOI: 10.1016/j.renene.2013.04.015
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().