EconPapers    
Economics at your fingertips  
 

Electrospun polyethylene glycol/cellulose acetate phase change fibers with core–sheath structure for thermal energy storage

Changzhong Chen, Yiyang Zhao and Wenmin Liu

Renewable Energy, 2013, vol. 60, issue C, 222-225

Abstract: The ultrafine phase change fibers (PCFs) with core–sheath structure based on polyethylene glycol/cellulose acetate (PEG/CA) blends were fabricated successfully via coaxial electrospinning for thermal energy storage. SEM and TEM images show that cylindrical and smooth phase change fibers are obtained and PEG as a phase change ingredient is encapsulated completely by CA sheath. The morphology of the composite fibers before and after thermal treatment indicates that the prepared fibers are form stable phase change materials (PCMs). The results from DSC demonstrate that the composite fibers impart balanced and reversible phase change behaviors, and phase transition enthalpies of the composite fibers increase with the increasing of PEG content in the fibers, while the phase transition temperatures of the fibers are similar with those of pure PEG. The stress–strain curves show that the ultimate strength and ultimate strain of the composite fibers are lower than those of CA fibers, and they decrease with the increase of PEG content. The PEG/CA composite fibers have extensive applications as a smart material for thermal energy storage and temperature regulation.

Keywords: Coaxial electrospinning; Core–sheath structure; Phase change fiber; Polyethylene glycol; Thermal energy storage (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148113002656
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:60:y:2013:i:c:p:222-225

DOI: 10.1016/j.renene.2013.05.020

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:60:y:2013:i:c:p:222-225