A novel test method for evaluating the methane gas permeability of biogas storage membrane
Zifu Li,
Fubin Yin,
Haoyuan Li,
Xiaoxi Wang and
Jing Lian
Renewable Energy, 2013, vol. 60, issue C, 572-577
Abstract:
In China, although an increasing number of biogas storage have been created from different kinds of membranes in biogas plants, the issue of leakage assessment continues to be ignored. In this study, a novel test method for the evaluation and determination of the methane permeability of biogas storage membrane is developed and presented based on experiences from the food packing industry. Two test pressures in gradients of differential pressures were selected based on the permeability principle and characteristics of methane. The test method was developed to detect and quantify the methane permeability of the membrane in the biogas plant, and it was proven to be simple, accurate, stable, and highly sensitive through testing experiments. Using the developed test method, seven different kinds of membrane products, from local and international companies currently in the market were selected and tested. The test data were analyzed using the SPSS software to evaluate and measure the permeability of the different kinds of biogas membrane storage. The results show a high precision within a 95% confidence interval, and the different membranes exhibited significant differences in the daily volume of the methane permeability of the membranes, except two kinds of membranes. The permeability capacity of the seven tested membrane scan be evaluated according to the membrane permeability.
Keywords: Biogas storage membrane; Novel test method; Methane permeability (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148113003030
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:60:y:2013:i:c:p:572-577
DOI: 10.1016/j.renene.2013.06.010
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().