Fault diagnosis for a wind turbine transmission system based on manifold learning and Shannon wavelet support vector machine
Baoping Tang,
Tao Song,
Feng Li and
Lei Deng
Renewable Energy, 2014, vol. 62, issue C, 1-9
Abstract:
Fault diagnosis for wind turbine transmission systems is an important task for reducing their maintenance cost. However, the non-stationary dynamic operating conditions of wind turbines pose a challenge to fault diagnosis for wind turbine transmission systems. In this paper, a novel fault diagnosis method based on manifold learning and Shannon wavelet support vector machine is proposed for wind turbine transmission systems. Firstly, mixed-domain features are extracted to construct a high-dimensional feature set characterizing the properties of non-stationary vibration signals from wind turbine transmission systems. Moreover, an effective manifold learning algorithm with non-linear dimensionality reduction capability, orthogonal neighborhood preserving embedding (ONPE), is applied to compress the high-dimensional feature set into low-dimensional eigenvectors. Finally, the low-dimensional eigenvectors are inputted into a Shannon wavelet support vector machine (SWSVM) to recognize faults. The performance of the proposed method was proved by successful fault diagnosis application in a wind turbine's gearbox. The application results indicated that the proposed method improved the accuracy of fault diagnosis.
Keywords: Fault diagnosis; Wind turbine transmission system; Manifold learning; Orthogonal neighborhood preserving embedding (ONPE); Shannon wavelet support vector machine (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (28)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148113003182
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:62:y:2014:i:c:p:1-9
DOI: 10.1016/j.renene.2013.06.025
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().