The impact of large-scale distributed generation on power grid and microgrids
Qian Ai,
Xiaohong Wang and
Xing He
Renewable Energy, 2014, vol. 62, issue C, 417-423
Abstract:
With the widespread application of distributed generation (DG), their utilization rate is increasingly higher and higher in the power system. This paper analyzes the static and transient impact of large-scale DGs integrated with the distribution network load models on the power grid. Studies of static voltage stability based on continuous power flow method have shown that a reasonable choice of DG's power grid position will help to improve the stability of the system. The transient simulation results show that these induction motors in the distribution network would make effect on the start-up and fault conditions, which may cause the instability of DGs and grid. The simulation results show that modeling of distributed generations and loads can help in-depth study of the microgrid stability and protection design.
Keywords: Distributed generation (DG); Microgrid; Improved continuous flow method (search for similar items in EconPapers)
Date: 2014
References: View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014811300387X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:62:y:2014:i:c:p:417-423
DOI: 10.1016/j.renene.2013.07.032
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().