EconPapers    
Economics at your fingertips  
 

Wood characterization for energy application proceeding from pruning Morus alba L., Platanus hispanica Münchh. and Sophora japonica L. in urban areas

B. Velázquez-Martí, M. Sajdak, I. López-Cortés and A.J. Callejón-Ferre

Renewable Energy, 2014, vol. 62, issue C, 478-483

Abstract: Pruning urban forests generates significant amounts of lignocellulosic biomass every year. The energy potential of this biomass is unclear. The aim of this research was direct analysis of the gross calorific value (GCV), elemental composition and moisture content of Morus alba L., Platanus hispanica Münchh. and Sophora japonica L. by means of laboratory equipment. This analysis allowed for further development of indirect GCV prediction models which are economically attractive and less time consuming to direct analysis. These models presented high coefficients of determination (R2 0.66–0.96). It has been determined that the species with highest mean GCV is S. japonica L. (19615.68 kJ/kg-dry sample) whereas the one with the lowest is the M. alba L. (18192.87 kJ/kg-dry sample). Elemental analysis showed highest carbon (48.22%), hydrogen (6.17%) and nitrogen (1.16%) content in S. japonica L. in dry samples. Sulfur was constant at the level 0.05% for all analyzed species. Also percentage of bark and wood density were determined. Mean percentage of bark was highest for P. hispanica Münchh. (13.05%) while wood density was highest for S. japonica L. (0.86 g cm−3). This way the research has proven that the biomass produced by pruning urban forests appears to be an interesting source of renewable energy.

Keywords: Urban forest; Urban biomass waste; GCV; Elemental composition (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148113004114
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:62:y:2014:i:c:p:478-483

DOI: 10.1016/j.renene.2013.08.010

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:62:y:2014:i:c:p:478-483