Experimental study of the phase change and energy characteristics inside a cylindrical latent heat energy storage system: Part 1 consecutive charging and discharging
Robynne E. Murray and
Dominic Groulx
Renewable Energy, 2014, vol. 62, issue C, 571-581
Abstract:
Solar domestic hot water (SDHW) systems are a cost effective and efficient way to pre-heat domestic water for hot water use in buildings. Currently used sensible energy storage systems (commonly using water as the storage medium) are simple and inexpensive, but require large amounts of storage material, and therefore are heavy and take up considerable space. Latent heat energy storage systems (LHESS) store the energy absorbed/released when a material goes through a phase transition: these materials are called phase change materials (PCMs). Because of the large quantities of energy that are stored during a phase change, latent heat energy storage is more dense than sensible energy storage, and can therefore reduce the weight and space requirements of the energy storage system. The main objective of this research is to study the heat transfer processes and phase change behavior of a PCM during consecutive charging and discharging of a LHESS. This leads to better understanding of the melting and solidification processes in order to optimize future LHESS design.
Keywords: Latent heat energy storage; Dodecanoic acid; Phase change heat transfer; Natural convection; Solar domestic hot water (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148113004084
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:62:y:2014:i:c:p:571-581
DOI: 10.1016/j.renene.2013.08.007
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().