Allowable flux density on a solar central receiver
Zhirong Liao,
Xin Li,
Chao Xu,
Chun Chang and
Zhifeng Wang
Renewable Energy, 2014, vol. 62, issue C, 747-753
Abstract:
The allowable flux density on a solar central receiver is a significant receiver parameter and is related to the receiver life span and economics. The allowable flux density has gradually increased as receiver technologies have developed and is related to various factors, such as the material characteristics, tube sizes, and internal tube flow conditions. A mathematical model was developed to calculate the allowable flux density for the Solar Two receiver which agrees well with published data. The model was then used to show that a higher allowable flux density can be obtained by increasing the allowable strain of the tube material and the fluid velocity and decreasing the tube thermal resistance, the convective thermal resistance, and the tube diameter and wall thickness. A sensitive analysis shows that the most important influence is the wall thickness, followed by the tube diameter and fluid velocity. Finally, a molten salt receiver gives a much higher allowable flux density than water/steam receivers and is even better than a supercritical steam receiver.
Keywords: Allowable flux density; Central receiver; Molten salt; Solar power (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (24)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148113004606
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:62:y:2014:i:c:p:747-753
DOI: 10.1016/j.renene.2013.08.044
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().