EconPapers    
Economics at your fingertips  
 

Allowable flux density on a solar central receiver

Zhirong Liao, Xin Li, Chao Xu, Chun Chang and Zhifeng Wang

Renewable Energy, 2014, vol. 62, issue C, 747-753

Abstract: The allowable flux density on a solar central receiver is a significant receiver parameter and is related to the receiver life span and economics. The allowable flux density has gradually increased as receiver technologies have developed and is related to various factors, such as the material characteristics, tube sizes, and internal tube flow conditions. A mathematical model was developed to calculate the allowable flux density for the Solar Two receiver which agrees well with published data. The model was then used to show that a higher allowable flux density can be obtained by increasing the allowable strain of the tube material and the fluid velocity and decreasing the tube thermal resistance, the convective thermal resistance, and the tube diameter and wall thickness. A sensitive analysis shows that the most important influence is the wall thickness, followed by the tube diameter and fluid velocity. Finally, a molten salt receiver gives a much higher allowable flux density than water/steam receivers and is even better than a supercritical steam receiver.

Keywords: Allowable flux density; Central receiver; Molten salt; Solar power (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (24)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148113004606
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:62:y:2014:i:c:p:747-753

DOI: 10.1016/j.renene.2013.08.044

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:62:y:2014:i:c:p:747-753