Energy potential of native shrub species in northern Spain
S. Pérez,
C.J. Renedo,
A. Ortiz,
F. Delgado and
I. Fernández
Renewable Energy, 2014, vol. 62, issue C, 79-83
Abstract:
This paper we present an energy review of the waste generated by shrub species in soils of low fertility for use as fuel in a power plant. The residues analysed belong to the species: Rhamus alaternus, Ulex europaeus, Prunus spinosa, Smilax aspera, Erica sp., Rubus ulmifolius, and Pteridium aquilinum. Gross calorific value (GCV), net calorific value (NCV), density, elementary chemical analysis, moisture content, percentage of ash, productivity, energy density and FVI (fuel value index) have been measured. These parameters have been determined for three levels of moisture (maximum, medium and minimum). At medium moisture level, the residues of U. europaeus are those that reach the greatest FVI, 20,000. In the other extreme is the P. aquilinum with an FVI of 403. The average productivity of waste, in t ha−1, of each species has been determined in order to know how much energy is stored per hectare. U. europaeus and P. spinosa are the species which accumulate more energy per hectare, with similar values of around 81 MJ ha−1 yr−1 and installed power of 2.59 W ha−1. The energy recovery of the waste in a thermal power plant would generate an annual revenue of 14.6 M€, taking into account that 40% of the forest land covered by shrub in Cantabria is used for this purpose.
Keywords: Sustainability; Shrub species; Fuel value index; Calorific value; Energy density; Power installed (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148113003418
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:62:y:2014:i:c:p:79-83
DOI: 10.1016/j.renene.2013.06.048
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().