A solar energy storage and power generation system based on supercritical carbon dioxide
Jia Liu,
Haisheng Chen,
Yujie Xu,
Liang Wang and
Chunqing Tan
Renewable Energy, 2014, vol. 64, issue C, 43-51
Abstract:
This paper proposes a new type of solar energy based power generation system using supercritical carbon dioxide and heat storage. The power generation cycle uses supercritical carbon dioxide as the working fluid and integrates the supercritical carbon dioxide cycle with an efficient high-temperature heat storage. The analysis shows that the new power generation system has significantly higher solar energy conversion efficiency in comparison to the conventional water-based (steam) system. At the same time, the heat storage not only overcomes the intermittent nature of solar energy but also improves the overall system efficiency. The study further reveals that the high temperatures and high pressures are favorable for solar energy storage and power generation. Moreover the expander and the heat storage/regenerator are found to be the key components that determine the overall system performance.
Keywords: Solar power system; Supercritical CO2; Heat storage; Heat regenerator (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148113005764
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:64:y:2014:i:c:p:43-51
DOI: 10.1016/j.renene.2013.10.045
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().