EconPapers    
Economics at your fingertips  
 

Fracture mechanics approach for failure of adhesive joints in wind turbine blades

Y.M. Ji and K.S. Han

Renewable Energy, 2014, vol. 65, issue C, 23-28

Abstract: Composite components of wind turbine blade are assembled with adhesive. In order to assess structural integrity of blades it is needed to investigate fracture of joints. In this study, finite element analysis based on fracture mechanics was conducted to characterize failure of adhesive joint for wind turbine blade. The cohesive zone model as proposed fracture mechanics approach was verified through the comparison of numerical results with experimental data. Finite element models of wind turbine were developed to predict damage initiation and propagation. Numerical results based on fracture mechanics showed that failure was initiated in the edge of the adhesive bond line due to high level of shear stress prior to reaching the extreme design loading and propagated progressively.

Keywords: Fracture mechanics; Adhesive joints; Wind turbine blades; Finite element analysis; Cohesive zone model (search for similar items in EconPapers)
Date: 2014
References: View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148113003492
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:65:y:2014:i:c:p:23-28

DOI: 10.1016/j.renene.2013.07.004

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:65:y:2014:i:c:p:23-28