EconPapers    
Economics at your fingertips  
 

Characteristics of turbine spacing in a wind farm using an optimal design process

Eunkuk Son, Seungmin Lee, Byeongho Hwang and Soogab Lee

Renewable Energy, 2014, vol. 65, issue C, 245-249

Abstract: The characteristics of turbine spacing for optimal wind farm efficiency were investigated using combined numerical models. The effects of wakes from upstream turbines were predicted by a model capable of determining velocity distributions on a rotor plane, based on Ainslie's approach. The performance results of a wind farm showed good agreement with measurements. The blade element momentum theory, in combination with a dynamic wake model, was applied. Wake model used the results of aerodynamic analysis as input properties. The optimal distance between wind turbines was predicted using a genetic algorithm to maximize efficiency in a wind farm. The results showed that the spacing between the first and the second turbines had the importance to the entire farm's efficiency.

Keywords: Wake model; Wind farm efficiency; Optimal turbine spacing; Genetic algorithm (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148113004898
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:65:y:2014:i:c:p:245-249

DOI: 10.1016/j.renene.2013.09.022

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:65:y:2014:i:c:p:245-249