EconPapers    
Economics at your fingertips  
 

Synthesis and evaluation of biochar-derived catalysts for removal of toluene (model tar) from biomass-generated producer gas

Pushpak N. Bhandari, Ajay Kumar, Danielle D. Bellmer and Raymond L. Huhnke

Renewable Energy, 2014, vol. 66, issue C, 346-353

Abstract: Challenges in removal of contaminants, especially tars, from biomass-generated producer gas continue to hinder commercialization efforts in biomass gasification. The objectives of this study were to synthesize catalysts made from biochar, a byproduct of biomass gasification and to evaluate their performance for tar removal. The three catalysts selected for this study were original biochar, activated carbon, and acidic surface activated carbon derived from biochar. Experiments were carried out in a fixed bed tubular catalytic reactor at temperatures of 700 and 800 °C using toluene as a model tar compound to measure effectiveness of the catalysts to remove tar. Steam was supplied to promote reforming reactions of tar. Results showed that all three catalysts were effective in toluene removal with removal efficiency of 69–92%. Activated carbon catalysts resulted in higher toluene removal because of their higher surface area (∼900 m2/g compared to less than 10 m2/g of biochar), larger pore diameter (19 A° compared to 15.5 A° of biochar) and larger pore volume (0.44 cc/g compared to 0.085 cc/g of biochar). An increase in reactor temperature from 700 to 800 °C resulted in 3–10% increase in toluene removal efficiency. Activated carbons had higher toluene removal efficiency compared to biochar catalysts.

Keywords: Biochar; Activated carbon; Biomass gasification; Tar; Toluene (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (21)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148113006940
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:66:y:2014:i:c:p:346-353

DOI: 10.1016/j.renene.2013.12.017

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:66:y:2014:i:c:p:346-353