EconPapers    
Economics at your fingertips  
 

Performance enhancement and load reduction of a 5 MW wind turbine blade

Richard W. Vesel and Jack J. McNamara

Renewable Energy, 2014, vol. 66, issue C, 391-401

Abstract: A wind turbine rotor blade, based on the U.S. National Renewable Energy Laboratory (NREL) 5 MW reference turbine, is optimized for minimum cost of energy through simultaneous consideration of aerodynamics and bend-twist coupling. Eighty-three total design variables are considered, encompassing airfoil shapes, chord and twist distributions, and the degree of bend-twist coupling in the blade. A recently developed method requiring significantly less computation than finite element analysis is used for planning and predicting the bend-twist coupling behavior of the rotor. Airfoil performance is computed using XFOIL, while the wind turbine loads and performance are computed using the NREL FAST code. The objective function is annual cost of energy (COE), where reductions in flapwise bending loads and blade surface area are assumed to decrease rotor cost through reduced material requirements. The developed optimization process projects decreased blade loads while maintaining wind turbine performance.

Keywords: Wind turbine; Optimization; Aero-structural optimization; Bend-twist coupling (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148113006964
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:66:y:2014:i:c:p:391-401

DOI: 10.1016/j.renene.2013.12.019

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:66:y:2014:i:c:p:391-401