Enhanced photovoltaic performance of inverted organic solar cells with In-doped ZnO as an electron extraction layer
M. Thambidurai,
Jun Young Kim,
Chan-mo Kang,
N. Muthukumarasamy,
Hyung-Jun Song,
Jiyun Song,
Youngjun Ko,
Dhayalan Velauthapillai and
Changhee Lee
Renewable Energy, 2014, vol. 66, issue C, 433-442
Abstract:
In the present work, a systematic study has been carried out to understand the effect of In doping on the various properties of the ZnO nanocrystalline thin films. In-doped ZnO nanocrystalline thin films with different indium concentrations (1.98%, 4.03%, 6.74%, 8.62% and 10.48% In) have been synthesized by sol–gel method. The grain size and surface roughness of the In-doped ZnO thin films are observed to be smaller than those of the ZnO thin films. 6.74% In-doped ZnO films with a low resistivity of 1.95 × 10−3 Ω cm and a high mobility of 2.19 cm2 V−1 S−1 have been prepared under optimal deposition conditions. Inverted organic solar cells containing In-doped ZnO as an electron extraction layer with the structure indium tin oxide (ITO)/In-doped ZnO/poly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)] (PCDTBT): [6,6]-phenyl C71-butyric acid methyl ester (PC71BM)/MoO3/Al have been fabricated. The inverted organic solar cell with 6.74% In-doped ZnO exhibited a power conversion efficiency of 5.58%, which is the best efficiency reported so far for these type of solar cells. The device performance has been optimized by varying the indium doping concentration. The results clearly demonstrate that significant improvement in power conversion efficiency can be obtained by incorporating In into the ZnO films.
Keywords: In doping; Sol–gel method; PCDTBT; PC71BM; Inverted organic solar cells (search for similar items in EconPapers)
Date: 2014
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148114000020
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:66:y:2014:i:c:p:433-442
DOI: 10.1016/j.renene.2013.12.031
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().