Fault detection method for grid-connected photovoltaic plants
W. Chine,
A. Mellit,
A. Massi Pavan and
S.A. Kalogirou
Renewable Energy, 2014, vol. 66, issue C, 99-110
Abstract:
In this work, an automatic fault detection method for grid-connected photovoltaic (GCPV) plants is presented. The proposed method generates a diagnostic signal which indicates possible faults occurring in the GCPV plant. In order to determine the location of the fault, the ratio between DC and AC power is monitored. The software tool developed identifies different types of faults like: fault in a photovoltaic module, fault in a photovoltaic string, fault in an inverter, and a general fault that may include partial shading, PV ageing, or MPPT error. In addition to the diagnostic signal, other essential information about the system can be displayed each 10 min on the designed tool. The method has been validated using an experimental database of climatic and electrical parameters regarding a 20 kWp GCPV plant installed on the rooftop of the municipality of Trieste, Italy. The obtained results indicate that the proposed method can detect and locate correctly different type of faults in both DC and AC sides of the GCPV plant. The developed software can help users to check possible faults on their systems in real time.
Keywords: GCPV plant; Power loss; Fault detection; Diagnostic (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (27)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148113006617
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:66:y:2014:i:c:p:99-110
DOI: 10.1016/j.renene.2013.11.073
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().