Analysis of optimization in an OTEC plant using organic Rankine cycle
Min-Hsiung Yang and
Rong-Hua Yeh
Renewable Energy, 2014, vol. 68, issue C, 25-34
Abstract:
This study quantified the effects of evaporation temperature, condensation temperature, and the inlet- and outlet-temperature differences of deep cold seawater and warm seawater on the performance of an ocean thermal energy conversion (OTEC) plant using an organic Rankine cycle (ORC), and also investigated the optimal operations required for the performance. A finite-temperature-difference heat transfer method is developed to evaluate the objective parameter, which is the ratio of net power output to the total heat transfer area of heat exchanger in the system, and R717, R600a, R245fa, R152a, and R134a were used as the working fluids. The optimal evaporation and condensation temperatures were obtained under various conditions for maximal objective parameters in an OTEC system.
Keywords: OTEC; ORC; Optimal; Evaporation; Condensation; Performance (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (30)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148114000585
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:68:y:2014:i:c:p:25-34
DOI: 10.1016/j.renene.2014.01.029
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().