Simple and fast fabrication of a-Si:H/c-Si hetero-junction solar cells by dual-chamber hot wire chemical vapor deposition
Dae Young Jeong,
Kyungmin Kim,
Hee-eun Song,
Jinsoo Song,
Seung Jae Baik and
Jeong Chul Lee
Renewable Energy, 2014, vol. 68, issue C, 397-402
Abstract:
One of the fabrication issues in hetero-junction crystalline Si solar cells is the overhead time between the deposition steps of the top and bottom surfaces, because flipping of the progressing wafer is necessary to process the both sides of the wafer. To reduce the overall processing time by reducing the overhead time, we propose a dual-chamber deposition system, where thin films on the top and bottom surfaces of the Si wafer are simultaneously deposited. We have evaluated the proposed deposition system by demonstrating fabricated hetero-junction crystalline Si solar cells, which were compared with solar cells fabricated by a conventional plasma-enhanced chemical deposition system. We have obtained the power conversion efficiency of 15.5% from solar cells fabricated by our dual-chamber system; and additional analyses confirmed that the proposed dual-chamber system is, in principle, competitive with conventional systems in terms of the fabricated solar cell performance. This novel concept for the fabrication of a hetero-junction crystalline Si solar cell is expected to lay an important foundation in the future thin film crystalline Si based photovoltaic industry.
Keywords: Heterojunction solar cell; Dual chamber; Amorphous Si (search for similar items in EconPapers)
Date: 2014
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148114001189
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:68:y:2014:i:c:p:397-402
DOI: 10.1016/j.renene.2014.02.027
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().