Multi-objective optimal design of hybrid renewable energy systems using PSO-simulation based approach
Masoud Sharafi and
Tarek Y. ELMekkawy
Renewable Energy, 2014, vol. 68, issue C, 67-79
Abstract:
Recently, the increasing energy demand has caused dramatic consumption of fossil fuels and unavoidable raising energy prices. Moreover, environmental effect of fossil fuel led to the need of using renewable energy (RE) to meet the rising energy demand. Unpredictability and the high cost of the renewable energy technologies are the main challenges of renewable energy usage. In this context, the integration of renewable energy sources to meet the energy demand of a given area is a promising scenario to overcome the RE challenges. In this study, a novel approach is proposed for optimal design of hybrid renewable energy systems (HRES) including various generators and storage devices. The ε-constraint method has been applied to minimize simultaneously the total cost of the system, unmet load, and fuel emission. A particle swarm optimization (PSO)-simulation based approach has been used to tackle the multi-objective optimization problem. The proposed approach has been tested on a case study of an HRES system that includes wind turbine, photovoltaic (PV) panels, diesel generator, batteries, fuel cell (FC), electrolyzer and hydrogen tank. Finally, a sensitivity analysis study is performed to study the sensibility of different parameters to the developed model.
Keywords: Hybrid renewable energy systems; CO2 emission; Optimization; PSO; Simulation (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (87)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148114000408
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:68:y:2014:i:c:p:67-79
DOI: 10.1016/j.renene.2014.01.011
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().