EconPapers    
Economics at your fingertips  
 

Sensitivity of satellite-based methods for deriving solar radiation to different choice of aerosol input and models

J. Polo, F. Antonanzas-Torres, J.M. Vindel and L. Ramirez

Renewable Energy, 2014, vol. 68, issue C, 785-792

Abstract: This paper presents a sensitivity analysis of satellite-based methods for deriving solar irradiance components for analyzing the impact of the external inputs that are normally associated to the satellite model. Different sensitivity calculations have been performed using as reference site the PSA (Solar Platform of Almeria) station placed at the south-east of Spain. Thus, the sensitivity to the aerosol information input has been addressed by comparing the estimations using aerosol input from AERONET data with those using aerosol dataset such as MODIS or MISR (based on satellite) and MACC (based on reanalysis). Sensitivity to the clear sky model choice has been also studied by using three different models, from the simpler ESRA model (in terms of input parameters) to the most sophisticated REST2. Finally, three global to direct conversion models (Louche, DirInt and DirIndex) have been included to explore the sensitivity of the direct normal irradiance estimations. The sensitivity analysis has shown the interrelations between the different cases according to the uncertainty of the input information used. The results have been analyzed for clear and non-clear sky conditions separately and for the DNI irradiance range of 400–900 W m−2 as a case of special interest for the concentrating solar power applications. The work presented here has as novelty the analysis of the propagation of uncertainty of individual models and atmospheric datasets in the framework of a satellite-based model for solar irradiance computation and their relative weights to the final performance of the model. An underestimation of AOD by 50% causes an error in the global horizontal irradiance calculated by a clear sky model of 3–5% depending on the model used, and slightly less for an overestimation of AOD. For DNI the error ranges are 12–15% and 9–12% for 50% underestimation and overestimation of AOD respectively.

Keywords: Solar radiation; Satellite models; Sensitivity analysis; Clear sky models (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148114001670
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:68:y:2014:i:c:p:785-792

DOI: 10.1016/j.renene.2014.03.022

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:68:y:2014:i:c:p:785-792