EconPapers    
Economics at your fingertips  
 

A computationally efficient method for the design of the heliostat field for solar power tower plant

Saeb M. Besarati and D. Yogi Goswami

Renewable Energy, 2014, vol. 69, issue C, 226-232

Abstract: A number of codes have been developed in order to optimize the heliostat field layout for solar power tower plants. These codes are intended to improve calculation accuracy as well as computational time. Of all the factors that need to be taken into account in these codes, shading and blocking calculations introduce significant complexity as they are computationally intensive. In this paper, a new and simple method is proposed to identify the heliostats with the greatest potential for shadowing and blocking a heliostat. Using the new method, the computational time is considerably reduced as unnecessary calculations are avoided. The Sassi method [1] is then used to calculate the shading and blocking efficiency. The results are compared with the literature and good agreement is obtained. As a case study, the paper also investigates optimization of a 50 MWth heliostat field layout for Dagget, California. Yearly insolation weighted efficiency is selected as the objective function while two parameters of the prophylaxis pattern [2], which define the shape of the field layout, are the design variables. The acceptance angle of the cavity receiver and distance between the adjacent heliostats are the physical constraints which are included in the optimization. The optimization algorithm is explained in detail and the optimal field layout is presented.

Keywords: Concentrated solar power; Heliostat field design; Shading and blocking calculation; Phyllotaxis; Optimization (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (36)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148114002079
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:69:y:2014:i:c:p:226-232

DOI: 10.1016/j.renene.2014.03.043

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:69:y:2014:i:c:p:226-232