The role of tides in shelf-scale simulations of the wave energy resource
M. Reza Hashemi and
Simon P. Neill
Renewable Energy, 2014, vol. 69, issue C, 300-310
Abstract:
Many regions throughout the world that are suitable for exploitation of the wave energy resource also experience large tidal ranges and associated strong tidal flows. However, tidal effects are not included in the majority of modelling studies which quantify the wave energy resource. This research attempts to quantify the impact of tides on the wave energy resource of the northwest European shelf seas, a region with a significant wave energy resource, and where many wave energy projects are under development. Results of analysis based on linear wave theory, and the application of a non-linear coupled wave-tide model (SWAN–ROMS), suggest that the impact of tides is significant, and can exceed 10% in some regions of strong tidal currents (e.g. headlands). Results also show that the effect of tidal currents on the wave resource is much greater than the contribution of variations in tidal water depth, and that regions which experience lower wave energy (and hence shorter wave periods) are more affected by tides than high wave energy regions. While this research provides general guidelines on the scale of the impact in regions of strong tidal flow, high resolution site-specific coupled wave-tide models are necessary for more detailed analysis.
Keywords: Wave current interaction; ROMS; SWAN; Wave energy; Renewable energy; Northwest European shelf seas (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014811400216X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:69:y:2014:i:c:p:300-310
DOI: 10.1016/j.renene.2014.03.052
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().