Differentiation of multiple maximum power points of partially shaded photovoltaic power generators
Anssi Mäki and
Seppo Valkealahti
Renewable Energy, 2014, vol. 71, issue C, 89-99
Abstract:
Partial shading conditions have a major effect on the electrical characteristics of photovoltaic (PV) power generators. In this paper, the effects of partial shading on maximum power points (MPPs) of a PV power generator have been systematically studied by using Simulink simulation model of a PV power generator composed of 18 series-connected PV modules. It is shown that the local MPPs can be classified into MPPs at low and high voltages based on the MPP operating point of the PV generator. The results also show that based on the MPP current and voltage it is possible to directly know if the MPP at high voltages is a local or a global MPP. The differentiation between local and global MPPs at high voltages is based on the voltage difference between the actual MPP voltage at high voltages and the theoretical MPP voltage under corresponding uniform conditions. This differentiation method was also tested to work correctly by utilizing experimental measurements of the Tampere University of Technology Solar PV Power Station Research Plant. By using this method, it can be identified if the system is operating at a local or a global MPP. This method can further be utilized to develop global MPP tracking algorithms.
Keywords: Global maximum power point; Maximum power point; Maximum power point tracking; Partial shading; Photovoltaic power generator (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148114002699
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:71:y:2014:i:c:p:89-99
DOI: 10.1016/j.renene.2014.05.018
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().