EconPapers    
Economics at your fingertips  
 

An accurate method for the PV model identification based on a genetic algorithm and the interior-point method

Arash M. Dizqah, Alireza Maheri and Krishna Busawon

Renewable Energy, 2014, vol. 72, issue C, 212-222

Abstract: Due to the PV module simulation requirements as well as recent applications of model-based controllers, the accurate photovoltaic (PV) model identification method is becoming essential to reduce the PV power losses effectively. The classical PV model identification methods use the manufacturers provided maximum power point (MPP) at the standard test condition (STC). However, the nominal operating cell temperature (NOCT) is the more practical condition and it is shown that the extracted model is not well suited to it. The proposed method in this paper estimates an accurate equivalent electrical circuit for the PV modules using both the STC and NOCT information provided by manufacturers. A multi-objective global optimization problem is formulated using only the main equation of the PV module at these two conditions that restrains the errors due to employing the experimental temperature coefficients. A novel combination of a genetic algorithm (GA) and the interior-point method (IPM) allows the proposed method to be fast and accurate regardless the PV technology. It is shown that the overall error, which is defined by the sum of the MPP errors of both the STC and the NOCT conditions, is improved by a factor between 5.1% and 31% depending on the PV technology.

Keywords: Photovoltaic (PV); PV model identification; Genetic algorithm (GA); Interior-point method (IPM); Maximum power point (MPP) (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148114004005
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:72:y:2014:i:c:p:212-222

DOI: 10.1016/j.renene.2014.07.014

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:72:y:2014:i:c:p:212-222