EconPapers    
Economics at your fingertips  
 

Solid-state D102 dye sensitized/poly(3-hexylthiophene) hybrid solar cells on flexible Ti substrate

Zhaosheng Xue, Long Wang, Wei Liu and Bin Liu

Renewable Energy, 2014, vol. 72, issue C, 22-28

Abstract: Flexible solid-state dye sensitized solar cell is an important milestone for low-cost, large scale fabrication of dye-sensitized solar cells. Flexible solid-state dye-sensitized solar cell is fabricated for the first time on titanium substrates using D102 sensitizer and a sputtered platinum semi-transparent cathode. Devices are illuminated from the cathode side since titanium substrates are non-transparent. Due to rear-side illumination, significant proportion of radiation is absorbed and scattered by poly(3-hexylthiophene) and platinum, respectively. Limiting the amount of platinum and poly(3-hexylthiophene), up to a point, is found to enhance device efficiency. The amount of platinum and poly(3-hexylthiophene) is optimized on glass substrates before fabrication of flexible devices on titanium substrates. The rough surface of titanium substrates is smoothened until a mirror finish and the growth of a thin layer of native oxide enhanced the device efficiency. Under optimized conditions, an efficiency of 1.20% is obtained for devices fabricated on titanium foil substrates. The lower efficiency as compared to conventional devices is mainly due to light absorption/scattering from the poly(3-hexylthiophene) and platinum layers.

Keywords: Solid-state dye-sensitized solar cells; Poly(3-hexylthiophene); Metal substrate; Flexible; Rear-side illumination; Hybrid solar cell (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148114003838
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:72:y:2014:i:c:p:22-28

DOI: 10.1016/j.renene.2014.06.043

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:72:y:2014:i:c:p:22-28