Biomass integrated gasification combined cogeneration with or without CO2 capture – A comparative thermodynamic study
Kuntal Jana and
Sudipta De
Renewable Energy, 2014, vol. 72, issue C, 243-252
Abstract:
Fossil fuels presently cater to majority of energy demand of the world. However, due to the climate change problem capture of CO2 emitted from the use of fossil fuels is emerging as a necessity. Alternately, developing technology with CO2 neutral fuels may reduce green house gas emission. Possible even better solution may be combining both of these options, i.e., employing CO2 capture process for energy efficient system using CO2 neutral fuels, say biomass. In this paper, such cogeneration system with CO2 capture using amine solution has been proposed. Thermodynamic modeling for the detail process has been implemented using ASPEN Plus®. Comparative study of performance relative to a similar base case plant without carbon capture has been presented. Results show post combustion CO2 capture process is better than pre-combustion CO2 capture process for such plants with net negative CO2 emission. Also degree of CO2 capture has to be optimized on the basis of the overall performance of the plant as higher CO2 capture affects thermodynamic and economic performance of the plant, specifically beyond certain value. In a net CO2 negative emission plant extent of CO2 capture is quite flexible and may be decided for optimum performance.
Keywords: BIGCC; CO2 capture; Comparative performance; Sensitivity analysis; ASPEN Plus® (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148114004133
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:72:y:2014:i:c:p:243-252
DOI: 10.1016/j.renene.2014.07.027
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().